PENGELOMPOKKAN PEMINJAMAN BUKU BERDASARKAN TIPE PEMBACA DAN KATEGORI BUKU MENGGUNAKAN ALGORITMA K-MEANS PADA PERPUSTAKAAN SEKOLAH

Authors

  • Sri Modista Br. Modista STMIK Kaputama Author

Keywords:

School Library, Data Mining, K - Means, Clustering, MATLAB

Abstract

School libraries play a vital role in supporting the learning process. However, manual management of book borrowing data often complicates pattern analysis. This study aims to apply the K-Means Clustering algorithm to group borrowing data based on reader type, book category, and loan duration. The research was conducted at SMP Negeri 1 Kuala using historical borrowing data. The results show that K-Means effectively classifies borrowing patterns, helping librarians identify popular and less popular books. This approach supports data-driven decision-making in improving library collection management

Downloads

Download data is not yet available.

Downloads

Published

2025-08-04

Issue

Section

Articles

How to Cite

PENGELOMPOKKAN PEMINJAMAN BUKU BERDASARKAN TIPE PEMBACA DAN KATEGORI BUKU MENGGUNAKAN ALGORITMA K-MEANS PADA PERPUSTAKAAN SEKOLAH. (2025). IMMI: International Journal Computer Of Munandar Membangun Indonesia, 1(2). https://mmipublisher.yayasanmmi.com/index.php/computer/article/view/41